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Outline

❑ Needs for automatic pavement condition evaluation and 

optimized pavement asset Management

❑ Emerging 3D laser technology

❑ Opportunities & Challenges

❑ Use of Crack Fundamental Element (CFE) to leverage the

newly extracted pavement distresses with high granularity

❑ Cases for optimized pavement asset management (3R: right 

time, right treatment, right location) using the automatically 

extracted pavement distress data:

❑ Case 1: Automatic crack detection and classification

❑ Case 2: Automatic detection and classification of OGFC loss 

of aggregates  

❑ Summary



Needs for Automatic Pavement 

Condition Evaluation and 

Optimized Pavement M&R and 

Asset Management



Transportation Assets in U.S.

>   1,750,000,000,000 Infrastructure
•Pavement

•Bridge

•Tunnel

•Hardware

oSign

oGuardrail

oLighting

o…

Others
•Equipment

•Vehicle

•Real Estate

•Human Resource

•…

Local Governments (Counties 

and Cities):

• Own more than 75% of 

nation’s 4 billion miles of 

roadway

• Own more than half of 

nation’s 600,000 bridges

(Challenges: a great need of maintenance and rehabilitation)



Pavement M&R Needs in U.S.

◼ US Highways (all public road and street) by end of 
2017
❑ More than 4.2 million centerline miles 

❑ Valued more than $ 3.4 trillion

◼ US highway operation, maintenance and 
rehabilitation (M&R) cost
❑ $ 83 billion annually in 2017

❑ M&R expenditure will increase further in the future

◼ If we can save 1% of $ 83 billion annual M&R
spending, which is $ 830,000,000 saving every 
year.

https://www.cbo.gov/system/files/2018-10/54539-Infrastructure.pdf

US Spending of Highways Infrastructure
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• Our research goal is to develop enhanced methodologies and methods to 

better determine the right time, right treatment at right location (3R) for 

optimizing our annual M&R spending. 

https://www.cbo.gov/system/files/2018-10/54539-Infrastructure.pdf


Emerging 3D Laser 

Technology



(Laurent, et. al., 2008)

2D/3D Pavement Surface Data Collected with 3D 

Laser Technology (Transverse Pavement Profiler)

◼ Resolution
❑ Driving direction: 1 – 5  mm

❑ Transverse direction: 1 mm 

❑ Elevation: 0.5 mm

❑ Data points collected per second and 
width covered

◼ 2 (lasers) * 2048 (points/profile/laser) * 
5600 HZ =  22,937,600 points/second 

(Operated at highway speed, 100 km/hr)



Opportunities

◼ Automated pavement condition evaluation using ML

◼ New Pavement Performance Indicators

◼ Pavement Preservation Quantity Estimation 

◼ Optimized Pavement MR&R

◼ Predictive Performance Models

◼ Pavement Construction Quality Control

◼ Pavement Construction Automation

◼ Road Safety Support

◼ Safe navigation of CV/AV



3D pavement data and its applications

a. Texture (IRI; MPD; RVD)

b. Cracks d. Rutting

1.Hsieh, Y., Tsai, Y. (2021). “Automated Asphalt Pavement Raveling Detection and Classification using Convolutional Neural 

Network and Macrotexture Analysis”. Transportation Research Record. 2021;2675(9):984-994. 

3.Hsieh, Y., Tsai, Y. (2020) “Machine Learning for Crack Detection: review and model performance comparison”, ASCE Journal of 

Computing in Civil Engineering, 34 (5), 04020038.

4.Tsai, Y., Chatterjee*, A, (2017) “Pothole Detection and Classification Using 3D Technology and Watershed Method”, ASCE 

Journal of Computing in Civil Engineering, 32(2), 04017078

5.Tsai, Y., Li*, F. (2012) “Detecting Asphalt Pavement Cracks under Different Lighting and Low Intensity Contrast Conditions Using 

Emerging 3D Laser Technology”, ASCE Journal of Transportation Engineering, 138(5), 649–656

6. Tsai, Y., Wu, Y., Lai, J., Geary, G. (2012) Characterizing Micro-milled Pavement Textures Using RVD for Super-thin Resurfacing 

on I-95 Using A Road Profiler, Journal of The Transportation Research Record, No.2306, pp.144-150.

7. Tsai, Y., Wu, Y., Ai, C., Pitts, E. (2012) “Feasibility Study of Measuring Concrete Joint Faulting Using 3D Continuous Pavement 

Profile Data,” ASCE Journal of Transportation Engineering,138(11),1291-1296.

8. Tsai, Y., Li, F., Wu, Y. (2013) “Rutting Condition Assessment Using Emerging 3D Line-Laser Imaging and GPS/GIS 

Technologies”, the International Conference on Road and Airfield Pavement Technology, Taipei, Taiwan, July 14, 2013.

c. Joint/crack faulting; 
potholes 

e. Raveling



Data Science in Transportation/CEE  (Infrastructure) 

3D Technology

Proposed high-resolution digital terrain model with the extracted 

pavement distresses and properties, like rutting and texture 

1.Automated and intelligent Infrastructure health 

condition Evaluation

2. Optimize the high-resolution 3D digital terrain and 

pavement distresses for safe navigation of CAV 

Cracking 

Rutting

Other infrastructure 

characteristics and distresses

Texture (IRI; MPD; RVD)



Automated Crack Detection 

and Classification Using 

ML/DL



Critically Review of Development Trends 

of Automated Crack Detection

❑ Totally 67 papers were reviewed

❑ Literature Categories

❑ Traditional ML-based methods

❑ Deep learning (DL)-based methods

Hsieh, Y., Tsai, Y. (2020) “Machine Learning for Crack Detection: 

review and model performance comparison”, ASCE Journal of 

Computing in Civil Engineering, 34 (5), 04020038.



DL-based Crack Detection Applications and 

Problem Formulations

1.Classification 2.Object Detection 3.SegmentationInput

1)image-level 

2)patch-level 
1)crack localization 

with bounding box 

1)pixel-level 

segmentation

Note: It is important to specify adequate crack detection outcomes for your pavement 

preservation & management so you can formulate adequate ML problems and applications.



1.DL - Classification

❑ Determine whether an image/image patch 

contains cracks
❑ Image-level

❑ Patch-level

❑ Consider as a binary classification task: 

Lightweight CNNs with less than 10 layers are 

usually used



1.DL - Image-level Classification

❑ Using the whole acquired images as input

❑ No localization information is involved

Image 

with crack

Image-level classification



1.DL - Patch-level Classification

❑ Benefits of using image patches:

❑ Generate more dataset

❑ Able to generate crack localization information in 

original images

❑ Results can further be used in crack types 

classification

❑ Generate coarse and blocky prediction of cracks 

which cannot be used to estimate crack features 

such as crack width, length, and branches

Patch-level 

classification



2.DL - Object Detection

❑ Generate bounding boxes around the 

areas that contain cracks

❑ Usually, crack type classification is also 

performed to label the crack type for each 

generated bounding box

❑ Utilize or modify existing object detection 

model (e.g. Faster-RCNN [1], SSD [2])

Object Detection



3.DL - Segmentation

❑ Pixel-wise prediction (segmentation) of cracks
❑ Precise crack location

❑ Precise crack structure

❑ The current trend of utilizing DL on crack 

detection:
❑ Pixel-wise segmentation can be used in both crack types 

classification and obtaining important crack features

❑ With the advances of sensing technologies, 2D and 3D 

data with higher resolution can be obtained

Segmentation



ML-based Crack Detection Trend
The number of publications on DL-based methods has 

grown rapidly since 2016, this shows that DL-based 

methods have proven their effectiveness

Hsieh, Y., Tsai, Y. (2020) “Machine Learning for Crack Detection: review and model 

performance comparison”, ASCE Journal of Computing in Civil Engineering, 34 (5), 04020038.



ML-based Crack Detection Trend

Patch-level classification received most of the attention in 2016 

and 2017, then segmentation quickly replaced it with the number 

of research still increasing

Hsieh, Y., Tsai, Y. (2020) “Machine Learning for Crack Detection: review and model 

performance comparison”, ASCE Journal of Computing in Civil Engineering, 34 (5), 04020038.



Challenges

◼ Data Quality Management

◼ Utilization of 3D pavement Data

◼ Transitioning from Manual to Automated Pavement 
Condition Assessment
❑ Pavement Rating System

❑ Forecasting and Treatment Selection

❑ Matching New Data to Legacy Pavement Condition Data

◼ Data Collection Considerations
❑ Surveying Multi-lane Roads

❑ Surveying Local Roads

◼ Switching to a Different Imaging System (legacy data)



System Data and Image Quality Assessment

◼ Some systematic errors can arise during data collection

◼ Periodic data quality verification 

◼ Many efforts are currently underway to standardize practices for 

calibration, certification, and verification of 3D pavement imaging 

systems

❑ Transportation Pooled Fund, TPF-5(299), which aims to improve the quality of 

pavement surface distress and transverse profile data collection and analysis. 

❑ Altmann and Ferris (2020) have published a study with proposed AASHTO 

standards for calibration, certification, and verification of transverse pavement profile 

measurements. 

◼ Focus: Rutting, Cross slope, and Edge drop-off

❑ Ongoing: NCHRP 01-60 research project aims to develop methods for measuring 

the characteristics of pavement surface images used for pavement evaluation and 

analysis, in addition to developing standard practices for the calibration, certification, 

and verification of imaging systems for consideration and adoption by AASHTO.

◼ Focus: Cracking and Macrotexture

Challenges: Data Quality Management (1/2)
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Data Quality Assessment – Gap Board 

Analysis

23

Gap Board
Consists of five gaps of 

widths: 1mm, 2mm, 3mm, 

4mm, and 5mm

NCHRP 01-60 (2018 - 2022)



Pavement Trend Checking

◼ Multi-year pavement condition trend checking is 
crucial

❑ Pavement condition should not improve without 
any applied treatment or deteriorate significantly 
without any valid reason. 

◼ Multiple-timestamp 3D pavement data registration 
is essential to guarantee the same pavement region 
of interest is being collected over the years

❑ In the transverse road direction: Vehicle wandering 
may result in a difference in the coverage area 
between different surveys

◼ Consistent segments based on linear referencing 
system

❑ Properly match the pavement condition extracted 
from the collected images with the linear 
referencing system consistently over the years. 

❑ Maintain consistent reporting segment termini over 
the years to properly track deterioration behavior

Challenges: Data Quality Management (2/2)

24

Tsai, Y., and Yang, Z. (2020). “New pavement performance indicators using crack fundamental elements and 3D 

pavement surface data with multiple-timestamp registration for crack deterioration analysis and optimal 

treatment determination.”, Transportation Research Record, 2674(7), 115–126.



Case 1: Automated Crack 

Detection & Classification



Automatic Crack Detection

Kaul*, V., Yezzi, A., Tsai, Y. (2012) “Detecting Curves with Unknown Endpoints and Arbitrary Topology Using 

Minimal Paths”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 10, pp. 1952-1965

Tsai, Y., Kaul*, V., Yezzi, A (2013) “Automating the Crack Map Detection Process for Machine Operated Crack 

Sealer”, Automation in Construction, Vol. 31, 10-18.



Key Components of Existing Automated Crack 

Evaluation (Detection and Classification)
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2-D

3-D

Stage 1:

Data Acquisition

Stage 2:

Crack Detection

Stage 3:

Crack Classification 

and Quantification

Crack MapRaw Data

1.Type

2. Severity Level

3. Extent

Jiang*, C. and Tsai, Y. (2015) “Enhanced Crack Segmentation Algorithm Using 3D 

Pavement Data”, ASCE Journal of Computing in Civil Engineering.



Asphalt Pavement Load Cracking

Level 1 Level 2

Level 3 Level 4



Asphalt Pavement Block Cracking

Level 1 Level 2

Level 3



Load Cracking Classification Results 

(Severity Level 1-2)

*Measurement Unit: Foot

Left Wheelpath

LC Level 1     14.1

Right Wheelpath

LC Level 1     10.1

Non Wheelpath

BT Level 1     17.4

Left Wheelpath

None              0

Right Wheelpath

LC Level 2     16.0

Non Wheelpath

BT Level 1     32.7



Load Cracking Classification Results 

(Severity Level 3-4)

*Measurement Unit: Foot

Left Wheelpath

LC Level 1       12.6

Right Wheelpath

LC Level 1       15.9

Non Wheelpath

BT Level 1       18.8

Left Wheelpath

None                0

Right Wheelpath

LC Level 2       14.7

Non Wheelpath

BT Level 1       4.1



Pavement Condition (COPACES) on Georgia’s Interstate 

Highways

Tsai, Y., Wang, Z., Ai, C. (2017) “Implementation of Automatic Sign Inventory and Pavement Condition 

Evaluation on Georgia’s Interstate Highways”, Final Report, Georgia Department of Transportation.



Successful Implementation of 3D Laser 

Technology and Automatic Detection 

and Classification to Georgia’s 

Interstate Highway System

(2017 AASHTO High Research Value Award, Sweet 16)
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Tsai, Y., Wang, Z., Ai, C. (2017) “Implementation of Automatic Sign Inventory and Pavement 

Condition Evaluation on Georgia’s Interstate Highways”, Final Report, Georgia Department 

of Transportation.



Revolutionize Infrastructure Management: 

Fundamental Crack Element (CFE) with 

Topology Representation

34



Extending

Intersecting

Approximating

0. Crack Fundamental 

Element

1. Predominant 

Crack Curve
(location, extent, width, depth, 

and orientation)

2. Crack Intersection
(number and location of key 

points)

3. Crack Piece
(polygon or spall type, angle 

and area)

4.1 Small-Scale 

Crack Network
(location, density of curves and 

pieces)

Model
Rules 

& Criteria
Applications

Crack Characteristics

• Location

• Length

• Orientation

• Width

• Depth

• Etc.

Crack Severity

Crack Type

Maintenance 

Operations

Multi-scale crack fundamental element model

4.2 Medium-Scale 

Crack Network
(density of curves and pieces)

4.N Large-Scale 

Crack Network
(Extent)

Tsai, Y., Jiang, C., Huang, Y. (2014) “A Multi-scale Crack Fundamental Element Model for Real World Pavement Crack 
Classification”, ASCE Journal of Computing in Civil Engineering.



Oct. 15, 2011

Dec. 07, 2013

Detailed crack propagation



Property: Crack Length

150.5
152.7

166.4

181.6

192.5

Total Crack Length (Meter)

The following slides will show that the propagation on transverse 

direction is more significant than on longitudinal direction. 



Comparison between crack propagation 

inside and outside the wheelpaths



Oct. 2011 

Range 

Image

Dec. 2013

Range 

Image

Oct. 2011

Crack Map

Dec. 2013

Crack Map

Example of 

Longitudinal 

Propagation



Oct. 2011 

Range 

Image

Dec. 2013

Range 

Image

Oct. 2011

Crack Map

Dec. 2013

Crack Map

Example of 

Transverse 

Propagation
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Longitudinal Crack Length (m) Transverse Crack Length (m)

Comparison between crack propagation 

along longitudinal and other directions

The following slides will show that the propagation on other 

directions is more significant than on longitudinal direction. 



Dec. 2011 

Range 

Image

Dec. 2013

Range 

Image

Dec. 2011

Crack Map

Dec. 2013

Crack Map

Example of Branching Out

(Crack Intersection Points)



Property: Crack Intersection Points

27 28

35

54

65

Number Of Crack Intersections



Dec. 2011 

Range 

Image

Dec. 2013

Range 

Image

Dec. 2011

Crack Map

Dec. 2013

Crack Map

Example of Forming Polygons

(Crack Polygons)



Property: Crack Polygons

0 0 0

3

6

Number Of Crack Polygons



Case 2: Automated Detection and 

Classification of Open-graded Friction 

Course Pavements (OGFC) Loss of 

Aggregates



Background
❑ What is the importance of loss of aggregates detection and 

classification?

❑ Loss of aggregates (raveling) is the predominating distress to Open 

Grade Friction Course (OGFC) pavements.

❑ OGFC is a porous surface type that is designed to reduce surface standing water in 

rainy weather conditions. Georgia’s entire asphalt interstate pavement use OGFC to 

improve safety in rainy condition. 

❑ Due to the porous nature, OGFC aggregates have less contact/binding surface to each 

other.

❑ Prone to raveling distress, and once raveling occurs, it typically develops very rapidly. 

❑ OGFC reduces water spraying 

in wet conditions



Raveling Survey Practices

◼ Classified into 3 severity levels
❑ Level 1: Loss of substantial number of stones. Could be 

rejuvenated with fog seal.

❑ Level 2: Loss of most surface. Too many stones lost to 
rejuvenate the surface and not enough to repave the road.

❑ Level 3: Loss of substantial portion of surface layer ( >1/2 
depth). Surface must be removed and repaved.

◼ Currently reported by visual inspection
❑ Predominant level in % length per mile

◼ For convenience, in this study, pavements without 
raveling were labeled as severity level 0.

Level 1 Level 2 Level 3



Automatic Raveling Detection and Classification Using 

Machine Learning

◼ Procedures
❑ Data collection (3D line laser imaging data)

❑ Data processing (pre-processing and feature generation)

❑ Classification using machine learning, including SVM and Random Forest 

(output raveling severity levels; classifier needs to be trained first)

Data Collection Data Processing

Classification

Tsai, Y. and Wang Z. (2015) “Development of an Asphalt Pavement Raveling Detection Algorithm Using Emerging 

3D Laser Technology and Macrotexture Analysis”, National Academy of Science NCHRP IDEA-163 Final Report.



Automatic Raveling Detection and 

Classification Methods Using 3D 

Technology and Macro-texture Analysis 

(NCHRP IDEA 163)

Tsai, Y. and Wang Z. (2015) “Development of an Asphalt Pavement Raveling 

Detection Algorithm Using Emerging 3D Laser Technology and Macrotexture

Analysis”, National Academy of Science NCHRP IDEA-163 Final Report.



Significant Saving Can be Generated if Pavement Loss of

Aggregates Section with Micro-milling and Thin Overlay

Treatment Potential Can be Applied.

◼ Besides improving the accuracy and productivity of current data collection, 

using 3D pavement technology with ML can also help achieve savings 

on maintenance & rehabilitation:

◼ An estimated saving is $17 million, assuming there are 100 lane-miles of 

raveling (loss of aggregates) on open-graded friction course (OGFC) that 

can be identified accurately for micro-milling and thin overlay treatment. 

• A conventional mill and resurfacing of a four-lane open-graded FC-5 friction 

course pavement is approximately $310,000 per lane mile based on Long-Range 

Estimating costs from the FDOT State Estimates Office. 

• A resurfacing replacing only the FC-5 due to raveling can usually be done for 

around $140,000 per lane mile, if done in a timely manner. 

• The difference and saving is approximately $170,000 per lane-mile.
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Summary (1/2)

◼ 3D laser technology has become a mainstream technology to collect 
simultaneously 2D intensity and 3D range pavement image data in the 
US for automatic pavement condition evaluation with image 
processing and machine learning.

◼ Machine Learning/Deep Leaning is the future trend for automated 
crack detection. Fast, robust, and accurate data acquiring and 
ground-truth labeling methods should be further developed.

◼ New US national standards have been developed on 1) PSI open 
format 2D/3D pavement surface data, and 2) 2D/3D pavement 
surface data quality measures

◼ Automatically extracted pavement distresses and characteristics data 
have high spatial resolution and distress granularity. 

◼ Great opportunities to use automatically extracted pavement 
distresses with high granularity and spatial resolution to optimize 
pavement asset management in terms right treatment at right time 
and right location.



◼ High-resolution 3D pavement data with enhanced automated 
pavement distress detection provide great opportunities and challenges 
for advancing the reliable pavement performance models development:

❑ New, valuable performance indicators need to be devised to 
characterize the detailed pavement distresses, like intersections and 
polygons defined in the crack fundamental element (CFE).

❑ Linkage needs to be established between new indicators and the 
commonly used composite rating, as well as the optimal treatment 
method and timing.

❑ Small-scale, localized treatments (homogeneous pavement 
performance section) can be planned cost effectively in a pavement 
management system using the detailed pavement distress data and the 
corresponding deterioration models

❑ Need for developing the accurate and reliable pavement 
performance and forecasting models using existing and new 
indicators.

❑ Need for developing new quantitative measures, like loss of 
aggregate percentage (rather than H, M, L severity levels) for raveling 
evaluation and forecasting for optimal timing of fog seal treatment.

Summary (2/2)



Thanks 

&

Q/A


