PDRG MEETING JRPUG 2022

Surface Properties and Human/Vehicle Interaction

Evaluation of Walkability on Walking Surfaces Using Electromyography

29-30, Oct, 2022 @Hokkaido University of Science

Kitami Institute of Technology,

Transportation Engineering Laboratory

Kenichiro SASAKI

►Introduction

- Background and Objectives
- What is EMG? and Targeted Muscles

►Experiment

- Targeted Pavements
- Walking Test
- Measurement Devices

➤Analysis Methods

- Acceleration Analysis
- EMG Analysis
- ➤ Results

Contents.

- Introduction
 - Background and Objectives
 - No Clear Indicators
 - Aging Society
 - Growing Health Consciousness

Maintenance of
 <u>Pedestrian Space</u>

> Introduction

- What is EMG? and Targeted Muscles

Interpretation of EMG

- Targeted Muscles
- Gastrocnemius Medialis (hereafter, Gmh) - Walkability Index
- Tibialis Anterior Muscle (hereafter, Ta)
 - Stumbling Ease Index

Copyright@2022 Obayashi Road Corporation/Kitami Institute of Technology All

Experiment — Targeted Pavements

Dense Granular Asphalt

Grooves Cut

Thermal Barrier

Water Retention

Porous Asphalt

Polished Porous Asphalt

Block (Varying Joint Widths)

Experiment – Walking Test

OBAYASHI ROAL KITAMI

Experiment — Measurement Devices

Previous Research

Correlation between Muscle ⇔ Physical Properties Gmh ⇔ Slip Resistance Ta ⇔ Texture Depth →ASM(American Slip Meter) Measures the Coefficient of Slip Resistance of Building Flooring.

• Correlates with C.S.R Tester

←CTM(Circular Track Meter) Measuring Method of Pavement Texture Depth Using a Rotary Texture Depth Measuring Device

PDRG MEETING JRPUG 2022 : Surface Properties and Human/Vehicle Interaction

Analysis Methods – Acceleration Analysis

Understanding Gait Dynamics

1.8Switch : ON Switch 0.8 **Acceleration Data** 1.6itch 9.0 i **Calculate Walking Cycle*** S 0.4 from Switch and **Acceleration Data** 1.2 0.2 To Myoelectric 0 Waveform Analysis Heel Lands Time[s]

Analysis using numerical analysis software MATLAB R2022a

MathWorks Homepage https://jp.mathworks.com/products/matlab.html

fig. Acceleration Waveforms

Walking Cycle*...from the time one heel lands on the ground until it lands again when walking

Copyright©2022 Obayashi Road Corporation/Kitami Institute of Technology All Rights Reserved.

8

PDRG MEETING JRPUG 2022 : Surface Properties and Human/Vehicle Interaction

*The time window was set to 0.03 seconds = 30 points (sampling frequency 1000 Hz). > Analysis Methods - EMG Analysis Gait Dynamics Obtained from Switch and Accelerometers 0.5 0.18 This study 1 Walking Cycle 1 Walking Cycle 1 Walking Cycle 1 Walking Cycle 0.4 0.16 0.3 0.14 Muscle Activity 0.2 0.12 $\sum_{\substack{\substack{ = \\ \underline{} 0.08}}}^{0.1}$ [mV]0.1 -0.1 -0.2 0.06 0.06 E 0.04 **Physical Properties** W/ 0.02 -0.3 -0.4 1001 501 1501 501 1001 1501 Time [ms] Time [ms] fig.(a) Raw Myoelectric Waveform fig.(b) Myoelectric Waveform after Smoothing Raw Data fig.(a) **Road Surface** Absolutization **Evaluation** Moving Average Smoothing Process* fig.(b) Integrate to Produce Muscle Activity

Copyright©2022 Obayashi Road Corporation/Kitami Institute of Technology All Rights Reserved.

OBAYASHI ROA

> Results

Muscle Activity : Small

Comparison of Walkability Index and Physical Properties

Relative Comparisons were Made Based on Walking on Dense Granular Pavement

Copyright©2022 Obayashi Road Corporation/Kitami Institute of Technology All Rights Reserved.

Large

> Results

Muscle Activity : Small

Comparison of <u>Stumbling Ease Index</u> and Physical Properties

Relative Comparisons were Made Based on Walking on Dense Granular Pavement

Copyright©2022 Obayashi Road Corporation/Kitami Institute of Technology All Rights Reserved.

Large

Contributing to the Development of Walking Spaces that Everyone can Use Safely

PDRG MEETING JRPUG 2022

Thank you for your kind attention.

"Evaluation of Walkability on Walking Surfaces Using Electromyography"

Kitami Institute of Technology Transportation Engineering Lab. **Kenichiro SASAKI** m3225200160@std.kitami-it.ac.jp

