

RPUG-PDRG 1st Joint Meeting

Knowledge Exchange for Pavement Diagnosis Innovation

Sapporo, Japan, April 19, 2019

A BASIC STUDY ON EVALUATION OF SPOTTED SURFACE DEFECTS BY A 3D FORMULATING SYSTEM USING TRANSVERSE PROFILE DATA

Masayuki Eguchi Akira Kawamura Kazuya Tomiyama Shigeki Takakahashi Shinichiro Omachi

Contents

Background

- Selection of Surface Detector
- New 3D Data as Assessment Method
 - Data Processing
 - Identification of Distress
- Validation Study
- Conclusions

Background: Surface Course in NEXCO

Interurban expressways are operated by NEXCO.

- **Standard surface course**
 - Asphalt (Since 1999) Porous

Background: Surface Course in NEXCO

 \Rightarrow <u>Accidents</u> on rainy days <u>were significantly reduced</u>.

Background: Deformation of Porous Asphalt

Frequent deformation of porous asphalt : Pumping

- Fine-grained fractions on a subbase spurt to the surface from a crack below the binder course.
- Spurting of fine-graded fractions on the subbase causes local settlement.

 \rightarrow In order to select a point to be repaired,

it is necessary to measure the amount of local settlement on the surface course and assess it.

Selection of Surface Detector

NEXCO periodically measures the surface course using a profiler

→We used this transverse profile to investigate the assessment of local deformation on the surface course.

Indicator	Cracking rate	Amount of rutting
Measured data	Road surface image	Transverse profile
Acquired data	Confirm deformation from an image.	Confirm deformation from height of road surface.
		100m 20m Transverse profile

the scope of assessment

 \rightarrow Count section narrowed down to a section width of 50 cm

[Identification of distress]

Method for extracting local deformation

 \rightarrow Calculate the standard deviation of profile data within the 50 by 50 cm

[Identification of distress]

•Visualized example of calculation of the standard deviation of the profile height

For the purpose of validating how this method can be used to identify pumping, rutting data were analysed for several sections of pavement.

• The road profile data were analysed every 10 mm in the transverse direction and every 50 mm in the longitudinal direction.

- The transverse gradient was corrected to 0%.
- The standard deviation was calculated based on data collected for 50 cm imes 50 cm sections.

For the purpose of validating how this method can be used to identify pumping.

- The standard deviation data could be identify the areas of pumping.
- Standard deviation
 Level3 distress could be
 observed before
 pumping.

Date	Road Surface Photo	Standard Deviation	Remarks
October 10 2014		-	[Standard Deviation] Level 3 (3 to 4mm)
March 2 2015	pumping		[Road Surface Photo] Pumping
July 10 2015			[Standard Deviation] Level 4 (3 to 5mm)
December 21 2015			[Standard Deviation] Level 5(3mm or higher)

Pumping prediction and occurrence in time series

Of the 74 sections
identified where
pumping had occurred,
93%could be detected.

 The average prediction rate was three months.

The proposed quasi-3D profile method

can adequately detect and predict pumping.

CONCLUSIONS

[Purpose of this study]

Develop methods for detection and prediction of pumping

Using data: Transverse profile (rutting data)

[Main findings of the study]

Identification of Distress

 Both transverse and longitudinal gradients were corrected for the rutting data. Pumping events were identified using the standard deviation of corrected data.

Validation Study

 90% of pumping events could be correctly detected with the proposed method. Pumping was predicted most successfully 10 months before the actual occurrence of this event.

Questions?

Masayuki Eguchi E-mail : m.eguchi.ac@e-nexco.co.jp